Fiber Cable Manufacturer

TEL: +86-769-81209595
Categories
Contact Us

Add: No.101 B.S. Industrial Zone, Wangniudun Town, Dongguan City, Guangdong, China
Tel: +86-769-81209595
Mob: +8613242086178 (WeChat or Whatsapp)
E-mail: milton@hgcable.cc
Helen Golden: helen@hgcable.cc

Duct Optical Fiber Cable

The third method of testing fiber attenuation is to use an OTDR. The OTDR uses an indirect method of measuring loss that involves the backscatter from the fiber. Cables can be attached to the OTDR with a launch cable with a mechanical splice to connect to the fiber under test.
Chat Now

1-288 cores  GYFTY non-metallic Optical Fiber Cable

Central strength member

1.5mm FRP

Outer diameter

Vary from 7 to 14mm

Application

aerial or duct cable networking system

Cores available

2,4,6,8,12,24,36,48,72,96,144,288

Cores type

G652D,G657A1,G657A2, G655C

OEM/ODM

Yes

Package

1/2/3/4/5km km each exporting wooden drums

Sheath

PE,HDPE

Learn more about fiber optical cable:

Bare fiber adapters

The third method of testing fiber attenuation is to use an OTDR. The OTDR uses an indirect method of measuring loss that involves the backscatter from the fiber. Cables can be attached to the OTDR with a launch cable with a mechanical splice to connect to the fiber under test.

bare fiber

Bare fiber is usually tested with a launch cable with a connector on the OTDR end and bare fiber on the test end, with the bare fiber to be tested connected to the launch cable with a mechanical splice which can be reused or a fusion splice. One needs only take a trace of the fiber and use the loss between two markers a known distance apart to calculate the loss coefficient of the fiber.

OTDRs generally offer two methods of making this measurement, a simple "two point" method shown here or the "least squares" method which calculates the best fit between the two markers, reducing the effects of noise on the measurement.

Test Sources for Loss Measurements

On the test source, two factors must be controlled to minimize measurement uncertainty, the spectral output and modal characteristics. The spectral output characteristics obviously include wavelength, as seen in the spectral attenuation curve, but may also include the spectral width. A wide spectral width source suffers absorption over a larger range of wavelengths, making it more difficult to obtain precise data on spectral attenuation at any specific wavelength. Monochromators are used as sources for spectral loss testing, since the spectral width of the source can be controlled exactly.

For single wavelength measurements the source can be a fixed wavelength LED or laser. Generally, attenuation measurements will be made with a source appropriate to the fiber. Most multimode fiber systems use LED sources while singlemode fiber systems use laser sources. Thus testing each of these fibers should be done with the appropriate source. Lasers should not be used with multimode fiber, since coherent sources like lasers have high measurement uncertainties in multimode fiber caused by modal noise. The wide spectral width of LEDs sometimes overlap the singlemode fiber cutoff wavelength (the lowest wavelength where the fiber supports only one mode) at lower wavelengths and the 1400 nm OH: absorption band at the upper wavelengths.

Hot Tags: duct optical fiber cable, China, suppliers, manufacturers, factory
Related Products
  • Contact Us

    Add: No.101 B.S. Industrial Zone, Wangniudun Town, Dongguan City, Guangdong, China
    Tel: +86-769-81209595
    Mob: +8613242086178 (WeChat or Whatsapp)
    E-mail: milton@hgcable.cc
    Helen Golden: helen@hgcable.cc

  • Categories
  • Copyright © Dongguan Hongguang Cable Co.,Ltd All Rights Reserved.